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ABSTRACT 

For any integer n such that 8 [ n or for which there exists an odd prime q such 
that qZ [ n, there is a central division algebra of dimension n 2 over its center 
which is not a crossed product. The algebra constructed in this paper is the 
algebra QfX1,...,X,.), the algebra generated over the rational Q by m (_>_2) 
generic matrices. 

Introduction. 

Since the early days of  the theory of  central simple algebras of  finite dimension, 

the crossed-products have been the basic tools for constructing these algebras" 

The famous result of  Nother-Brauer-Hasse that every such algebra over an 

algebraic number field is a cyclic algebra supported the idea that possibly every 

central division algebra of  finite dimension is a cyclic algebra. This was disproved 

by Albert [1] who constructed a central division algebra of  dimension 16 = 42 

which is a crossed-product but which is not cyclic. In fact, Albert I-2, p. 179] 

showed that every central division algebra of  dimension 42 contains a maximal 

normal field of  degree 4. This, together with Wedderburn 's  result that all central 

simple algebra of  dimension 32 are cyclic and the fact that these algebras are 

tensor products of  algebras of  prime power dimension, shows that all central 

division algebras of  dimension n 2 with n = 2, 3, 4, 6, 12 are crossed-products. 

The main question, as to whether all such algebras are crossed-products, remained 

unsettled although it was expected that such is not the case. The present paper 

t This paper was originally presented in November, 1971 for publication elsewhere in a 
volume in honor of Prof. A. A. Albert on the occasion of his 65th birthday. The volume was 
never published due to the death of Prof. Albert in June 1972. 
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settles this problem by showing that for every n which is divisible by a square of  

an odd prime or by 8, there exists a central division algebra of dimension n a 

which is not a crossed-product. The problem remains open for n = 2 v~ qlqx"" qk, 

0 < V0 < 2, where the q~ > 3 are different primes (except for the cases mentioned 

above). 
The algebra we construct is Q(X1,X2,  " " , X m ) -  the algebra generated by m 

generic matrices of  order n x n, i.e., matrices whose entries are commutative 

indeterminates over the rationals Q. The proof  that Q(X) is not a crossed-product 

is obtained by first assuming that this algebra is a croosed-product with a group F. 

Then it is shown that every central simple algebra of dimension n 2 over any field 

of  characteristic zero is a crossed-product with the same group F. We then exhibit 

a field F of  power series over which every algebra of that dimension is a crossed- 

product  only of an abelian group which is a direct product of  cyclic groups of  

prime order; therefore, F must be such a group. Next, we find a prime p such 

that for its p-adic field Qp there exists division rings of  dimension n 2 over Qp 

whose maximal abelian normal commutative subfields have a group of  auto- 

morphisms which is a cyclic extension of  a cyclic 2-group S 2. Finally, only for 

n = 2~~ ... q, ,  0 < vo < 2, qi distinct odd primes, do there exist groups F 

of order n which are both direct products of  cyclic groups of prime order as well 

as cyclic extensions of  Sz by a cyclic group; this clearly proves our main result, 

1. Power series fields 

Let F be a field of characteristic zero. Denote by F(t} the field of power series 

p(t} = Z art', aveF ,  m > - oo. 
V~I?I 

We need a few properties of  these fields. 

PROPOSITION 1. Let H be an algebraic extension of  degree n over K = F{t),  

then: 

1. H = Ko[r] ,  where Ko = Fo(t} with Fo an algebraic extension o f  degree 

of  F and z = (7-1t)l/e, 0 ~ 7~Fo and f e  = n. 

2. H ~- Fo (~) by the correspondence 

p = 0 \ / * = 0  v>m I v,p \ 
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3. I f F  is algebraically closed, we can choose y = 1, and then H is a Kummer 

extension of K. 

The proof of these facts is well known. For (1) see, e.g., [4, Ex. 1 p. 671. In this 

case, Ko is the inertia subfield of H, and H over K is completely ramified. Part (2) 

is readily proved by a direct computation. 

We extend the last result to the field of power series in any finite number of 

indeterminates. 

Let tl, t z , . . ' , t ,  be a finite set of indeterminates. Define successively: 

F(t i ,  ..., tj} = ( F {t~,..., tj_i}){tj}. Thus the general element of F{ti ,  . . . , t  j} has 

the form: 

. . . .  vl v2 t y  p { t l , " ' , t j }  • E ~, av:~...,jtl t2 "'" 
vj>-mj v j - l ~ m j -  1 v l ~ m l  

where mi = m i ( v i +  1, "",Vj) > - -  0(3 for i = 1, .-.,j -- 1, m j  > - -  o0. 

Clearly, each F{t l , . . . , t j }  is a field and the extension of the proposition for 

these fields is: 

PROPOSITION 2. Let H be an algebraic extension of degree n of K = F{tl ,  

�9 " ,  t,}. Then: 

(1) H = Ko[z l , ' " ,%]  where Ko = Fo{t~,...,t,} and Fo is an algebraic 

extension of degree f over F. The elements zl, "",zr satisfy the relations: 

~7~ t l  = ~ "  , ~ 1  t~ = ~;~ ~ . . . . ,  

~-~ t s = ~?,' ~,~ . . .~,,  ... 

with ri ~Fo, n = fv l lv22 ... vr,., and [Kl-zl, . . . , zJ :  K[zi ,  ..., zi_l]] = v,~. 

(2) H ~- Fo(zl ,zz , . . . , z ,}  by an isomorphism which is completely determined 

by the correspondence z~ ~ %for all i, and by virtue of being the identity on Fo. 

(3) I f  F is algebraically closed, then we can choose 7i = 1. 

The proof is by induction on r, and for r = 1 our proposition is Proposition 1. 

Let K,-1 = F{ t l , ' " , t , -1} .  Then since K = K,_l(t~}, it follows by Pro- 

position 1 that H = Ko[Zr] where Ko is an algebraic extension of degree f,_~ 

and z, = (u-~t,) ~/~" , u ~Ko and f ,-iv,~ = n. By the induction assumption, we 

have Ko = F o [ z , ' " ,  z,_ 11 with the z~ satisfying the relations: 

V21 V22 al ~ l  ~ ~ V P + I 1  V r - I  r - I  y~l t l  = z~ '1, Y21t2 = "el "c2 , ' " , / r - l , , - I  71 ""zr-1 

and f ,_  1 = fvllv22"'" v,_ 1 , -  1 where f = [Fo: F1. We also have 
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Ko -~ FO{Zl,'",Tr-1} by the induction assumption (2) in our proposition. 

Assume, therefore, that u ~ F o ( z , . . . ,  z ,_ 1}. 
m ~ m + l  

Set u -I  = bmzr-1 + Om+lZ,-1 + ' " b i n  ~ 0 in FO{Zl, '",zr-2), and then 
U - 1/v,  I , -  1 / v . ~ m / v , r  Cl = = Us "~-1 ~ +Cl r - lZr -1  +. . . )1/~".  Nowputu , -~  (1 dr Clr_lq:r_l dr 

�9 " ) l /~"e  Fo(Z~, "", Zr-1}. The same procedure can be continued with 6~/ ' ' "  etc., 

and finally we get 

U--]/Vrr ~1 ~t2 ~tr--1 . .  
~-- T1 T2 " " T r - 1  U O U l U 2  " U r - l "  

u~o"~Fo, ul  = 1 + c1~1 + "",u2 = ] + c2~z2 + " " , ' " , U r - 1  = 1 + C l r - ~ r - l +  "" .  

civ E Fo{z , ' " , z~ -  1} and ct = Vri/V, with Vri integers. 

Hence Zr = (u - l t r )  1Iv'" = ~1~1~2~2 " " Z r - l  "'" Ur-1 tl/v': 

Finally, setting u~"= ?r, and replacing Zr by U-ilU21""Ur--]Zr which also 

generates H over Ko, we get that this new Zr also satisfies ?;-it  r v,, v,r ,"C1 . . . ,C r  . 

We also have v , f , _  z = n. Hence by induction, we get 

n = f v l J v 2 2  " "  l~rr. 

The proof of (2) follows now, by applying (2) of Proposition 1 to H = Ko[zr] , 

and the induction assumption on Ko --- Fo(zl, "", Zr-1}. 

I f  Fo is algebraically closed, use induction for i < r to obtain 7e = 1 and re- 
l l v r r  place zr by ?r Zr, then the corresponding new ?r = 1. 

Note also that Proposition 1 yields that [Ko[zr]: Ko] = Vrr and this means 

that [K[Zl ," ' ,Zr] :  K [ Z l , ' " , Z r - 1 ] ]  -- Vrr. This and the induction assumption 

conclude the proof. 

We shall also need a simple lemma on field extensions. 

LEMMA A 1) Let  H = Fief] be an algebraic  extension o f  pr ime  degree p 

o f  the f ie ld  F. Then  H = F[~ re]for every m, (re, p) = 1, and f o r  which F contains 

the ruth roots o f  one. 

2) Let  H = F[w]/ql , '" ,wln/q'] ,  w , ~ t ,  be an algebraic  extension o f  f o f  

degree n = qlq2"'" qr. I f  the qi are pr ime  and F contains the qith roots o f  one 

f o r  all  i = 1 , . . . , r ,  then H is an abelian extension o f  F with a galois group 

$1 x ... x S r which is a direct product  o f  cyclic groups Si o f  order qi. 

PROOF. If  ~m~ F then H ~ F[~ m ] D  F, and since [H : F] = p is prime we 

must have F[~ m] = H. If  a m = a ~F,  then a ~ 1 since ~ F  and F contains 

all mth roots of one. The last condition also implies that F[~] is a normal 

extension of F as a splitting field of x m -  a; hence its galois group must 
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be cyclic S of prime order p. Let a be a generator of  S; then a p = 1. But 

on the other hand, since a" - a = 0, then a(~) = co~ with o~ an ruth root of  one 

and, therefore, am(a) = og'a = a which implies that a m = 1. This is impossible 

since (re, p) = 1. 

To prove (2) we note that H is a normal extension of  F as a splitting field of  

the polynomials x q ' -  o~. I f  u~ is a root of  this polynomial and a an automorphism 

of H over F, then a(ut) = cotu, where o~t is a q~th root of  one. The mapping 

a ~ (o~a, oJ2, "", o~) will define a homomorphism of the galois group into a product  

F = $1 • "'" • S, of  cyclic groups St of  order q~. The order of  the latter is 

ql " qz""  q, = n which is exactly the order of  the galois group of H over K, 

hence this group is isomorphic with F. Q.E.D. 

The construction of the field of  power series F { t l , " . ,  t,} can be extended to 

a non-commutative case: Let D be a division ring (not necessarily commutative) 

and z be an automorphism of D. Let D{x} be the set of  all formal power series 

{p(x) = ] ~ , ,  d,x~; d, e D, m > - oo}. Then D{x} becomes a division ring with 

multiplication defined by the relation xd  = �9 - l (d )x  (or equivalently, xz(d) = dx)  

for every d E D. The commutative case is obtained with z = identity and D = F 

is a commutative field. 

The division ring O { x l , " . , x , }  is defined successively as (O{x l , . . . , x , } ) {x , } ,  

with respect to the given automorphism ~1, . . . ,z,  where zl is an automorphism 

of O and ~i+1 is an automorphism of D{x~,. . . ,  x,}. 

2. Division algebras over power series fields 

Let F be an algebraically closed field. Consider the commutative field 

K = F{ t l , t2 , ' " , t2r}  of power series in 2r indeterminates t t. Let n = ql " q2 "" q, 

be a product of  r prime numbers (not necessarily different). For  each i, consider 

the cyclic extension of degree q~, Ki = K[t~2~a] of  K with the generating 
~, l[q~ c~nA automorphism ut defined by at(zl) = mizi where % = ~2~- 1 . . . .  @ is a primitive 

q~ root  of  one. 

Define the cyclic central simple algebra Ai = (K,,ai,  t2i). Thus, A t = ~ZKta' ~ 

with multiplication defined by the relations ai" k = at(k)at for k ~Kt  and 

q~ : t 2 t .  a t  

Our aim is to show: 

THEOREM 3. The algebra A = A1 | 1 7 4  Ar is a central division algebra 
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o f  dimension n 2 over its center K;  and the m a x i m a l  subfields L o f  A are abelian 

extensions o f  K with a galois group F = S 1 x ... x S~ with S t cyclic groups o f  

order q~. 

PROOF. First we obtain a different representation of A : Consider the division 

ring of non-commutative power series D = F { x t , x 2 ,  "' ,x2,} with multiplication 

defined by x2~x2i-1 = (co~x2~-t)x2~ and in all other cases xixj  = xjx, .  That is, 

D is a non-commutative power series division ring obtained successively by 2r 

steps: each even step 2i is a non-commutative extension obtained by an auto- 

morphism which maps x2~-1 ~ o9~x2~_ 1 and which leaves the other x j, j < 2i - 1, 

invariant. 

We will show that A = D, which will prove that A is a division ring. Since 

(Ai: K) = q2 and K is its center, it follows that (A: K) = (q~ �9 q2"'" q,)2 = n 2 

and it is known that K is its center. 

Define the isomorphism qS: A - . D  by the correspondence ~(z~)= x2~-1, 

' 1/~'i = 1,2,-. . ,r .  That is, the generic element a ~ A  ~b(tr,) = x2~ where z i = ,2~- ~, 

has the form 

a = vL ( v  Z ., , p , , , 2  ,f,2r.~.,,, 
, ' (~, .p) ,~ . 2  "'" , 2 ,  J . 1  "'" z , ~ ' a ~  ' ''" ~ ,  

(v,~) (p) 

and its image will be 

d?(a) = ~,a(v~v)x~ ~ +q'P' x~'+a'P~ . . . .  ~2r-l*"-'+a'P~-" -~2,"*~'+q'~" 

Note that in the sums, 0 < v, < qi, and 0 =</A < q~. The image ~b(a) is obtained 

by preserving the relations ~ '  = t2~-1, a ~ ' =  t2~, which requires that ~b(t2~_~) 

= xq2',_x and (o(ai) = x~2'~. 

The map ~b defines a one-to-one correspondence between the elements of A 

and D since every integer m can be uniquely written in the form m = v + q,p 

with 0 =< v < qi. To verify that 4> is an automorphism, it suffices to show that 

the basic relations of A are preserved under ~. These relations are: the com- 

mutativity of the tl's," t r i z  i = (OkiZ i )q  i ; tri'r J = Tjl7  i for i # j ;  and zf = t2i_ 1, 

0"/q' ---- t 2 i .  The definitions of D and ~ were, in fact, motivated by these conditions, 

and so they are easily checked, e.g., dp(aiz~) =x2 ix2 i_  I - - - ~ ( ( D i X 2 i _ l ) X 2 i  , 

= dp(o)5~)ai, etc. 

We shall replace A byD and let L be a maximal subfield of A so that (L: K) = n, 

It follows by Proposition 2 that L = K[~I, 42, "", ~.r] with the relations: 
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V21 V22 V i i  Vl2 Vi i  (R1) tl = ~1,,  t2 = ~ 1  42 , ' " , t i  = 41 42 ""4~ 

with v ,  > 1 and n = v11" v22 . . . . .  v2,2r( = qx " q2 "'" qr). 

We introduce the valuation v ( f )  of  D by setting for  

f = ]~ Z ... ]~ av,,v2,...,~2xl ~" x2 ~2...x2~ ", 
V2r~m2r V2r-l~--m2r-1 v l ~ m !  

for  which as~.m 2...,m2. ~ O, the value v ( f )  = ( m l , r n 2 , . . . , m z , ) ~ g  z'. Since the 

produc t  o f  two monomials  is a monomial ,  it follows easily that  v ( f g ) =  v ( f ) +  v(g) 

and v ( f  m) = m Y ( f )  where the addit ion and multiplication are vector addit ion 

and scalar multiplication in Z 2' . 

Hence the relation o f  (R1):  ~ " ' " 4 ]  " =  q -  t~--x~ where q = q~o with 

io = [ i  2 1 ~ ]  yields that  

(R2) vilv(41) + vi2v(42) + "'" + vuv(41) = (0,0, " " ,q ,0 ,  . . . ,0).  

We can show now by induction on i that,  for  each i, v(4i) = (/~il,/~i2, "",#~, 

0 , . . . , 0 ) ~ Z  2'. Indeed,  for  i =  1, vllv(~l)  = (ql ,  0, 0, ..., 0) yields that  v (~ )  

= (~q 1, 0 , . . . ,  0). A similar applicat ion o f  (R1) and an induction assumption on i 

yields that  v(4i) has the required form. 

Let  eft  = (Vik) be the tr iangular 2r  x 2r matrix obtained by integers Vtk, and 

let ~ = (/l~k) the triangular matrix obtained by the rows v(4~). The  relations 

(R2), for  every i, yield the simple matrix relation . A t . / / =  Diag{ql ,q~ , q2,q2, 

�9 .., qr, q ,} .  

Some of  the primes q~ may be equal, so we could have started f rom the case, 

ql = q 2  . . . . .  qx~ = P l ,  

q ~ + l  . . . . .  q ~ + ~  = Pz, '",q~.l  +.-.+2~_1+1 . . . . .  qr = Ps 

where p~ are the different primes among the qj. Let  m = pl �9 P2""P~,  and con- 

sider the diagonal matrix q / = D i a g { m q x  -1 , m q 2 1 , . . . , m q f X } .  Let  ~ = d / ~  ', 

which is also a tr iangular matrix, with integral entries, clearly .A/'~ = .A/'..r162 q/ 

= D i a g ( q l , ' " , q 2 , } "  D i a g ( m q ~ l , . . . , m q f , 1 } = m . 1  which is a scalar matrix.  

Hence ~ a n d , f "  commute,  so ~.4/" = m. r I f  ~ = (P~k) then we have the relation 

Ek  = 1 PizV,lk = 0 if k < i and ] ~  = 1PizV;~i = m. 

Consider the element k, = I-I~=lt,~ ,a K. The preceeding relations show that  

k, = 1--[ tf '~ = 1-[ ( r  ... 4 ~ )  ~ = 40.  4 ~ r = 4m, 
A A 
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and se t t i ngd i=  mqiolwhereio  = [ / ~ 1 ] , ~ / , =  ~f ' , then 

(Ra) (di, q~o) = 1 and t/~ to = k s E K. 

Finally, we prove that L=K[~lj , , t l j2, . . . , t l j .]  and t l ~ . = k j ~ e K .  Since 

[L: K] = ql " q2 " ' "  qr, our theorem will follow from Lemma A. 

Indeed choose the ~/j~ as follows: Let it  be the first ~ r K. Then K = Kt-1 

= K[~, , . . . ,~ t_l] .  We have [Kt- l[~t] :  K , - , ] = q t l ,  with t l =  I t - -21 ]. Since 

qtl is prime, if we set t = j~, then it follows by (Ra) in view of Lemma A, that 

Kt = K[~t] = K[rlt]. Suppose we have chosen Jl < J2 < , ' " ,  < J,-1 such that 

q,.. = [K[tlj~,...,rlj,,]: K[~/j,,...,~/i,_,] ] and K[tljl,...,tlj.,] = K[r162  = Kr 

for some a = tr(/0. In particular, let K[tljl,...,rlj,_~] = K [ ~ , . . . , ~ ]  = K~. Let 

~ be the first ~ for which ~ K , ,  i.e., K~ = K,_I  # K~ = K~_~[~]. So set 

jp = v, and then again (Ra) in view of Lemma A implies that K~_ l[t/j ~] = K~. 

Thus, Jp-1 <Jp and [K[.-.,~/j~] : K[...,t/j~_,]] = q, and the other relations 

also hold. Finally we get K[~j,, ~j~,..., r/j.,] = K[~ ~,..., ~2,] = H. Now 

[H: K] = qt, " qt2""q,.. = n and since n = q~ �9 q2"'" q,, we must have u = r, 

qt, = ql, q~ = q2, "", qt, = q~. This completes the proof of our theorem. 

3. Division algebras over p-adic fields 

Let n be a fixed integer and Qp be the field of p-adic numbers. It is well known 

(e.g., [2, p. 143] that there exists a division algebra B of dimension n 2 over Qp. 

Actually, we are going to choose p so that we can restrict the galois groups of 

the field extensions of degree n of Q r  But for our application, we prefer to state 

this result in the form: 

THEOREM 3. There exists a prime p, and a division algebra B of dimension 

n 2 over Qp, such that the maximal subfields orB,  which are normal abelian 

extensions of Qp, are either cyclic or their galois group is $2 • with $2 a 

cyclic group of order 2, Sm cyclic of  order m, and n = 2m. 

PROOF. Central division algebras B of dimension n 2 exist for any p. We are 

going to choose the prime p such that the only normal abelian extensions of Qp 

of degree n have the property stated in the theorem. 

If  (p, n) = 1, then any algebraic extension H of Qp of degree n is tamely ramified 

and, therefore, can be obtained in two steps, Qp c T c H, where T is a maximal 
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ramified extension of Qp in H, and H is totally and tamely ramified over T. Let 

(T :  Qp) = f ,  (H: T) = e; then n = ef. I f H  is assumed to be a normal extension 

of  Qp, it is also normal over T and hence, H = T(H) where H e =  ~ e T  is a 

prime element and T contains the primitive eth roots of one (e.g. [5, ch. I, pro- 

position 1]. Let F be a galois group of H over Qp, and F T the inertia subgroup, 

which is also the group of  automorphisms which leave T invariant; in our case, 

it must be cyclic of  order e. Furthermore, F/FT is isomorphic with the group of  

automorphisms of T over Q~ which is cyclic of order f (e.g. [5, corollary, p. 27]. 

Thus, we have the exact sequence (*) 0 ~ F r ~ F ~ F /F r  ~ 0. 

By reproducing part of  the proof  used in constructing the Artin symbol, we 

show that if (n,p) = 1, then e I p -  1: Indeed, let a E F arbitrarily and z ~ F r  

such that z ( I I ) =  toll where 09 is a primitive eth root of  one. Furthermore, 

tr(II) = urI for a unit u ~ H. I f  F is abelian then aT(H) = a(to)a(H) = a(to)uII 

and z a ( r I ) =  z(u)z(II)= x(u) and az = "ra implies that a(to)u = z(u)to. Now 

z e F r  and, therefore, passing to the residue field, we have z(u) = u. Consequently, 

a(to)u = z(u)to implies that a(to) -- to. Finally, to and a(to) are both roots of the 

polynomial X e - 1. Since (e, p) -- 1 (as e ln ), it follows that different roots of  

this polynomial determine different classes in the residue field; and hence, 

a(to) = to. This being true for every tr ~ F implies that to ~ Qp. But the only roots 

of  one of  order m,(m,p)  = 1, which lie in Qp are those with m = p -  1; hence 

in our case e ] p - 1. These facts about the roots of one are an immediate con- 

sequence of the result that the extension by an mth root of  one is unramified, and 

i t s  degree is # where # is the minimal integer such that pg - 1 - 0(m). 
YO VI V2 u  Let n = 2 ql q2 " ' "  q r ,  where qi are different odd primes. Take d --- 2(mod qi), 

d - 3 (mod 4), for all i. Then (d, n) = 1, and so by the Dirichlet theorem, there 

exists a prime number p = d + 4nb. For  this prime number, p - 1 = d - 1 + 4nb 

-- 1 (mod qi), and p - 1 - 2 (mod 4). Thus neither qi nor 4 divides p - 1; hence 

( n , p - 1 )  = l o r  = 2 .  

Thus, given n, we choose the preceding p and respectively, Q~; then the only 

ramification factor possible is e = 1, or 2 since el ( n , p -  1). Consequently, the 

galois group is either cyclic for the case e = 1, or a cyclic extension of the group 

Sf  ~ F /F  r by F r  -~ $2~ Such a group is commutative if and only if either it is 

itself cyclic or it is equal to $2 x S s. Clearly then n = 2f. 

COROLLARY 4. I f  n is fixed and p is chosen as before, then there may exist a 

normal abelian extention H of  degree n over Q~ whose galois group is a direct 
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product o f  cyclic 9roups of  prime order, only i f  n = 2V~ ... qr, 0 < VO ~ 2, 

and the qi are distinct odd primes. 

Indeed, a cyclic group S, or the group S: x Sz, which are the possible galois 

groups, is a direct product of cyclic groups of prime order if and only if n, or 

respectively f ,  is a product of different primes. This clearly implies the corollary. 

4. The generic division algebra 

Let X1, "",Xm, m > 2, be m-generic matrices of order n over a universal 

domain f~ ~ Q, i.e., the entries ~ ,  i = 1, ..., m, ~, # = 1, ..., n, are commutative 

indeterminates over Q as well as any field of characteristic zero which will occur 

in our discussions. Let Q[~], Q(~) be the ring of all polynomials, the rational 

functions, respectively, in the ~'s over Q. It is well known (e.g., C. Procesi [6]) 

that the ring Q[X1, "",Xm] is a domain which has an Ore ring of quotients 

Q(X) = Q(X~, ..., Xm) ~ M,(Q(~)). The division ring Q(X) is a division ring of 

dimension n 2 over its center C. We shall refer to Q(X) as the generic division ring 

of dimension n 2, and our main result is: 

THEOREM 5. I f  for  some odd prime q, q21 n, or 81 n, then the generic division 

algebra of  dimension n z is not a crossed-product. 

We begin with a lemma on polynomial identities, which actually could be 

avoided by choosing m to be infinite. 

LEMMA 6. Let S be a central simple algebra of  dimension n z over an infinite 

center C, and p[xl,. . . ,x,~] = 0 be a non-commutative polynomial relation 
which vanishes for  every substitution x ~ - - s ~ S  such that C[St,'",Sm] = S. 

Then p[x] = 0 vanishes for  all substitution xi = si ~ S (with no restriction). 

PROOF. Let x~ = si ~ S arbitrary elements, and let {s~} be a set of generators 

of S over C; such a set exists if m _>_ 2. Consider p[(1 - t)Si + tsi] = ~(t) as a 

polynomial in a commutative t. I f  p[~] # 0, then :~(0 does not vanish identically 

in t. Therefore, there is only a finite number of values of t in C such that 

p[(1 - t)g, + ts[] = O. 

On the other hand, the proper subalgebras of S satisfy the identity $2,-2[Yl,  

"",Y2,-2]" = 0 [3, lemma 6] and since S = C[st . . . s ,  ], S 2 , - a [ y ] " #  0 in S. 

So there exist polynomials 9,[x] such that S2,-219~[x] , '" ,92,-2[x]]"  r 0 for 

the substitution x~ = s~, i.e., 9~[sj] are the elements which do not annihilate this 

polynomial. In particular, this implies that the polynomial Sz, - z [91 [(1 - t)gi + tsi], 
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�9 ..,]" = h(t) is not identically zero as it does not vanish for t -- I. Hence, we can 

find a value t = to e C such that both p[(1 - t0)g~ + tosi] r O, and h[to] ~ 0. 

This leads to a contradiction, since h[to] ~ 0 implies that the algebra 

C [ . . . , ( 1 -  to)J~ + toSl,'"] = S as it does not satisfy S,-2[x]" = 0. But then 

by assumption of the lemma, we must have p[(1 - t0)J, + tosJ = 0. Consequently 

we have shown that p[gJ = 0, as required. 

We need also the following localization theorem (Small [7]). 

TrIEOREM 7. Let P be a prime ideal in a prime ring R, which is an algebra 

over a field F. I f  R and RIP satisfy exactly the same polynomial identities, 

then in the quotient ring Q(R) (which exists by Posner's theorem), the set 

Q~,(R) = {a- lb l  a regular modP)  is a subrin9 with a maximal ideal PQe(R) 

= {a-Xbl b eP)  and Qv(R)/PQv(R) "~ RIP. 

The beginning of the proof of the main Theorem 5 starts by assuming that the 

generic algebra Q(X) is a crossed-product of a maximal field C(U) with a galois 

group F. This means that U satisfies a polynomial: (G1)0 = f (U) = U" + C1U"-1 

. J t - C 2 U n - 2 - J i  - . . ,  -~Cn, C, eC, and Po,[U] = U, Po2[U],...,Po,[U]] are the 

different roots of f(2) = 0; also for each 0 e F, there exist Zo e Q(X) such that 

(G2)Z o U Z~ -1 = Po[U], (G3)Zv = Zov a (0, ~), and a (0, ~) = P(U; O, ~) 

e C(U) satisfies the co-cycle conditions: (G4) 6a = 1. All these elements, together 

with the elements (Po,[U]-Po [U]) -1, a(O,O) -1 and the coefficients in the 

P(U;O,O), are non-zero elements of the form g[X~, . . . ,X, ,]- lh[X~, . . . ,X, ,] .  

Let f~[X~,.. . ,  Xr,] e Q[x]  be the non-zero product of all polynomials appearing 

in all nominators and denominators of these fractions. 

In the next stage, we consider any field F of  characteristic zero and a division 

algebra D of dimension n 2 over F. Now consider Q[X] c_ FIX] since Q ~ F. 

The inclusion can be extended to the embedding of quotient rings, i.e., to the 

generic division rings Q(X) ~ F(X). This follows from the fact that an element is 

regular in Q[X] if and only if its determinant is r 0, and so also non-zero in 

F IX] ;  therefore, it is also invertible in F(X). In particular all relations (G1), etc. 

will be valid also in F(X). In particular, this means that F(X) is also a crossed- 

product with the group F. 

But we aim further: Consider all homomorphisms ~b: F IX]-- .D,  where ~b 

is surjective, and then neKer~b = 0. Indeed, let p[X]~ n Ker~b. Since every 

surjective q~ is obtained by arbitrary mappings ofX~ ~ d~, where Fide,.. . ,  d,,] = D, 

it follows that p[xa, ... , x,,] = 0 for all sets of generators of the division algebra D. 
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But then by Lemma 6, p[xl, ..., xm] = 0 is a polynomial identity of D. Now. 

(D: F) = n2; hence p[x] = 0 vanishes for all central simple algebras of dimension 

n 2 over their center [-3, p. 4771. In particular, p[x] = 0 also in F(X) which means 

that p[X~,...,Xm] = 0, i.e., n0Kerq~ = 0. 

A simple consequence of this result is that considering the preceding non- 

zero polynomial fo[-X], we can find an epimorphism ~b : FIX] ~ D such that 

fG[X] ~KerqS. Now (D : Center) = n2; hence it satisfies the same identities as 

F[X] and therefore we can apply Theorem 7 with P = Ker qS. Now f ~  P; hence 

all the elements appearing in the conditions (G1), (G2), ... will belong to the local 

quotient ring Qv(R) and not to the ideal PQv(R) as the denominators divide 

fG(sP and therefore they are regular m o d P  (since R/P~- D is a division ring). 

Consequently, the relations (G1),... will hold in Qv(R)/PQp(R)_~ R/P ~-D, i.e., the 

algebra D contains elements satisfying these relations. Note also that the elements 

of the center remain in the center of the ring of quotients and in the quotient 

rings as they commute with a set of generators. Denote respectively, by small 

letters, the elements in D corresponding to the classes in Qe(R)/Qp(R), i.e., 

U + PQv(P)--* u, etc. Thus the division algebra D will contain the elements 

u = pe~(u),...,pe,(u ) which are n-different roots of the polynomial f(2) 

= 2 " +  cl~,"-i + ... +c,,  and they are different since [Po,(u)-po~(U)] - i e D  

for i r j. Also Po(u)sF(u) and zouzd -1 = po(u), which implies that the inner 

automorphisms by zo induce n different automorphisms on F(u), and, as D ~ F(u), 

it must be a field and (D : F)) < n. On the other hand, f(2) has n-different roots 

so (F(u) : F) = n. It follows, therefore, that F(u) is a maximal commutative 

subfield of F and these automorphisms form the complete set of automorphisms 

of F(u). Furthermore, since both a(O,O) and a(O,~) -1 belong to Qv(R), the rela- 

tion ZoZv = zova(O, ~,) with a(O, ~) ~ F(u) implies that these consist of a group of 

automorphisms which is clearly isomorphic with the given group F. Also, the 

other relations (G2)-(G4) clearly yield that D ~_ (F(u), F, a) but, since both 

are of dimension n 2, D is the crossed-product (F(u), F, a). 

We are now in position to prove Theorem 5: 

Assume Q(X~,..-, xm) is a crossed-product with a group F. Then by our preced- 

ing result, every central division algebra of dimension n 2 over a field of characteris- 

tic zero is a crossed-product of this group F. If  we apply this theorem to the algebra 

A of Theorem 3, F must be abelian ~ S~ x ... x St, with Si cyclic. But then 

applying our result to the algebra B of Theorem 3 and noting that it must be 
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abelian f rom the previous case, it follows by Corol lary  4, that  n = 2V~ ... qr, 

0 < Vo < 2, q~ different odd  primes. 

Hence, if 8 [ n or  if q2] n for  some odd  prime q, then Q(X) cannot  be a crossed- 

product .  Q.E.D.  
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